Research Article

The science curricula for ages 11-12 across the European Union: A comparative analysis

Elefteria Tsiouri 1 * , Charilaos Tsihouridis 1 , Konstantinos T. Kotsis 2
More Detail
1 Department of Educational Sciences and Social Work, University of Patras, Patras, GREECE2 Department of Primary Education, University of Ioannina, Ioannina, GREECE* Corresponding Author
Eurasian Journal of Science and Environmental Education, 4(2), December 2024, 39-46, https://doi.org/10.30935/ejsee/15732
Submitted: 13 September 2024, Published: 19 December 2024
OPEN ACCESS   30 Views   22 Downloads
Download Full Text (PDF)

ABSTRACT

The impartation of scientific education is important in shaping the cognition and skills of young scholars, particularly those in the 11-12-year-old age group. The diversity of educational frameworks and cultural phenomena in Europe results in a wide range of science syllabi for this specific age group. This manuscript undertakes a comparative analysis of these diverse syllabi, exploring various methodologies in curriculum development, didactic strategies, evaluative mechanisms, and integrating technological tools with empirical experimentation. The goal is to identify the most effective practices and potential areas for enhancing students’ scientific and academic journey in this age group.

CITATION (APA)

Tsiouri, E., Tsihouridis, C., & Kotsis, K. T. (2024). The science curricula for ages 11-12 across the European Union: A comparative analysis. Eurasian Journal of Science and Environmental Education, 4(2), 39-46. https://doi.org/10.30935/ejsee/15732

REFERENCES

  1. Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969. https://doi.org/10.1080/09500690701749305
  2. Alamri, H. A., Watson, S., & Watson, W. (2021). Learning technology models that support personalization within blended learning environments in higher education. TechTrends, 65(1), 62–78. https://doi.org/10.1007/s11528-020-00530-3
  3. Antanasijević, D., Pocajt, V., Ristić, M., & Perić-Grujić, A. (2017). Differential multi-criteria analysis for the assessment of sustainability performance of European countries: Beyond country ranking. Journal of Cleaner Production, 165, 213–220. https://doi.org/10.1016/j.jclepro.2017.07.131
  4. Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map (pp. 23–38). Routledge. https://doi.org/10.4324/9781315753157-3
  5. Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.
  6. Carayannis, E. G., & Morawska-Jancelewicz, J. (2022). The futures of Europe: Society 5.0 and Industry 5.0 as driving forces of future universities. Journal of the Knowledge Economy, 13, 3445–3471. https://doi.org/10.1007/s13132-021-00854-2
  7. Carlson, L. E., & Sullivan, J. F. (1999). Hands-on engineering: Learning by doing in the integrated teaching and learning program. International Journal of Engineering Education, 15(1), 20–31.
  8. Childs, P. E. (2015). Curriculum development in science–Past, present and future. LUMAT: International Journal on Math, Science and Technology Education, 3(3), 381–400. https://doi.org/10.31129/lumat.v3i3.1036
  9. Coffey, J., Black, P., & Atkin, J. M. (Eds.). (2001). Classroom assessment and the national science education standards. National Academies Press.
  10. de Jong, Y., Verbeek, M., Michelsen, V., Bjørn, P., Los, W., Steeman, F., Bailly, N., Basire, C., Chylarecki, P., Stloukal, E., Hagedorn, G., Wetzel, F. T., Glöckler, F., Kroupa, A., Korb, G., Hoffmann, A., Häuser, C., Kohlbecker, A., Müller, A., . . ., & Penev, L. (2014). Fauna Europaea–All European animal species on the web. Biodiversity Data Journal, 2, Article e4034. https://doi.org/10.3897/BDJ.2.e4034
  11. DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601. https://doi.org/10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L
  12. di Fuccia, D., Witteck, T., Markic, S., & Eilks, I. (2012). Trends in practical work in German science education. Eurasia Journal of Mathematics, Science and Technology Education, 8(1), 59–72. https://doi.org/10.12973/eurasia.2012.817a
  13. Dilli, S., & Westerhuis, G. (2018). How institutions and gender differences in education shape entrepreneurial activity: A cross-national perspective. Small Business Economics, 51(2), 371–392. https://doi.org/10.1007/s11187-018-0002-z
  14. Eilks, I., Rauch, F., Ralle, B., & Hofstein, A. (2013). How to allocate the chemistry curriculum between science and society. In I. Eilks, & A. Hofstein (Eds.), Teaching chemistry–A studybook (pp. 1–36). SensePublishers. https://doi.org/10.1007/978-94-6209-140-5_1
  15. Engeln, K., Euler, M., & Maass, K. (2013). Inquiry-based learning in mathematics and science: A comparative baseline study of teachers’ beliefs and practices across 12 European countries. ZDM Mathematics Education, 45, 823–836. https://doi.org/10.1007/s11858-013-0507-5
  16. Erdoğan, M., Kostova, Z., & Marcinkowski, T. (2009). Components of environmental literacy in elementary science education curriculum in Bulgaria and Turkey. Eurasia Journal of Mathematics, Science and Technology Education, 5(1), 15–26. https://doi.org/10.12973/ejmste/75253
  17. Esarey, J., & Valdes, N. (2020). Unbiased, reliable, and valid student evaluations can still be unfair. Assessment & Evaluation in Higher Education, 45(8), 1106–1120. https://doi.org/10.1080/02602938.2020.1724875
  18. Fensham, P. J. (2022). The future curriculum for school science: What can be learnt from the past? Research in Science Education, 52(1), 81–102. https://doi.org/10.1007/s11165-022-10090-6
  19. Ferrari, A. (2013). DIGCOMP: A framework for developing and understanding digital competence in Europe. Publications Office of the European Union. https://doi.org/10.2788/52966
  20. Greif, R., Lockey, A., Breckwoldt, J., Carmona, F., Conaghan, P., Kuzovlev, A., Pflanzl-Knizacek, L., Sari, F., Shammet, S., Scapigliati, A., Turner, N., Yeung, J., & Monsieurs, K. G. (2021). European Resuscitation Council guidelines 2021: Education for resuscitation. Resuscitation, 161, 388–407. https://doi.org/10.1016/j.resuscitation.2021.02.016
  21. Gueudet, G., Bueno-Ravel, L., Modeste, S., & Trouche, L. (2017). Curriculum in France: A national frame in transition. In D. Thompson, M. A. Huntley, & C. Suurtamm (Eds.), International perspectives on mathematics curriculum (pp. 41–70). Information Age Publishing.
  22. Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2021). Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers, 3, 275–285. https://doi.org/10.1016/j.susoc.2022.05.004
  23. Hartley, K., Van Santen, R., & Kirchherr, J. (2020). Policies for transitioning towards a circular economy: Expectations from the European Union (EU). Resources, Conservation and Recycling, 155, Article 104634. https://doi.org/10.1016/j.resconrec.2019.104634
  24. Holstermann, N., Grube, D., & Bögeholz, S. (2010). Hands-on activities and their influence on students’ interest. Research in Science Education, 40, 743–757. https://doi.org/10.1007/s11165-009-9142-0
  25. Jeschke, S., Dahlmann, N., Pfeiffer, O., Schroder, C., & Wilke, L. (2007). Challenge diversity: New curricula in natural sciences, computer science and engineering. In Proceedings of the 37th Annual Frontiers in Education Conference–Global Engineering: Knowledge Without Borders, Opportunities Without Passports (pp. 1–9). IEEE. https://doi.org/10.1109/FIE.2007.4418008
  26. Kalantzis, M., & Cope, B. (2016). Learner differences in theory and practice. Open Review of Educational Research, 3(1), 85–132. https://doi.org/10.1080/23265507.2016.1164616
  27. Kaufmann, R., & Vallade, J. I. (2020). Exploring connections in the online learning environment: student perceptions of rapport, climate, and loneliness. Interactive Learning Environments, 30(10), 1794–1808. https://doi.org/10.1080/10494820.2020.1749670
  28. Keating, A., Ortloff, D. H., & Philippou, S. (2009). Citizenship education curricula: The changes and challenges presented by global and European integration. Journal of Curriculum Studies, 41(2), 145–158. https://doi.org/10.1080/00220270802485063
  29. Kotsis, K. T. (2024). The significance of experiments in inquiry-based science teaching. European Journal of Education and Pedagogy, 5(2), 86–92. https://doi.org/10.24018/ejedu.2024.5.2.815
  30. Kotsis, K. T., Gikopoulou, O., Patrinopoulos, M., Kapotis, E., & Kalkanis, G. (2023). Designing the new science curricula for primary education in Greece. In S.-G. Soulis, M. Liakopoulou, & A. Galani (Eds.), Challenges and concerns in 21st century education (pp. 101–116). Cambridge Scholars Publishing.
  31. Krell, M., Reinisch, B., & Krüger, D. (2015). Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45, 367–393. https://doi.org/10.1007/s11165-014-9427-9
  32. Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366
  33. Lunetta, V. N., Hofstein, A., & Clough, M. P. (2007). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. In S. K. Abell, K. Appleton, & D. Hanuscin (Eds.), Handbook of research on science education (pp. 393–441). Routledge. https://doi.org/10.4324/9780203824696
  34. Lyons, T. (2006). Different countries, same science classes: Students’ experiences of school science in their own words. International Journal of Science Education, 28(6), 591–613. https://doi.org/10.1080/09500690500339621
  35. Malin, J. R., Brown, C., Ion, G., Van Ackeren, I., Bremm, N., Luzmore, R., Flood, J., & Rind, G. M. (2020). World-wide barriers and enablers to achieving evidence-informed practice in education: What can be learnt from Spain, England, the United States, and Germany? Humanities and Social Sciences Communications, 7, Article 99. https://doi.org/10.1057/s41599-020-00587-8
  36. Markey, D. K., O’ Brien, D. B., Kouta, D. C., Okantey, C., & O’ Donnell, D. C. (2021). Embracing classroom cultural diversity: Innovations for nurturing inclusive intercultural learning and culturally responsive teaching. Teaching and Learning in Nursing, 16(3), 258–262. https://doi.org/10.1016/j.teln.2021.01.008
  37. Markula, A., & Aksela, M. (2022).1 The key characteristics of project-based learning: How teachers implement projects in K-12 science education. Disciplinary and Interdisciplinary Science Education Research, 4, Article 2. https://doi.org/10.1186/s43031-021-00042-x
  38. Mikac, R. (2021). Migration education in universities: A comparative study of Croatia and Indonesia. Atlantis Press. https://doi.org/10.2991/assehr.k.211206.003
  39. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
  40. Ortiz-Revilla, J., Adúriz-Bravo, A., & Greca, I. M. (2020). A framework for epistemological discussion on integrated STEM education. Science & Education, 29, 857–880. https://doi.org/10.1007/s11191-020-00131-9
  41. Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. Nuffield Foundation. https://www.nuffieldfoundation.org/about/publications/science-education-in-europe-critical-reflections
  42. Pacheco-Torgal, F. (2014). Eco-efficient construction and building materials research under the EU framework programme horizon 2020. Construction and Building Materials, 51, 151–162. https://doi.org/10.1016/j.conbuildmat.2013.10.058
  43. Palmberg, I., & Jeronen, E. (2017). Systems thinking for understanding sustainability? Nordic student teachers’ views on the relationship between species identification, biodiversity and sustainable development. Education Sciences, 7(3), Article 72. https://doi.org/10.3390/educsci7030072
  44. Palmer, J. A. (1998). Environmental education in the 21st century: Theory, practice, progress and promise. Routledge.
  45. Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003
  46. Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. https://doi.org/10.1016/j.compedu.2016.02.002
  47. Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85–129. https://doi.org/10.1080/03057267.2014.881626
  48. Priestley, M., Alvunger, D., Philippou, S., & Soini, T. (Eds.). (2021). Curriculum making in Europe: Policy and practice within and across diverse contexts. Emerald Publishing Limited. https://doi.org/10.1108/9781838677350
  49. Rivera Muñoz, J. L., Moscoso Ojeda, F., Aparicio Jurado, D. L., Puga Peña, P. F., Martel Carranza, C. P., Quispe Berríos, H., Madonado Farfan, A. R., Arias-Gonzáles, J. L., & Vasquez-Pauca, M. J. (2022). Systematic review of adaptive learning technology for learning in higher education. Eurasian Journal of Educational Research, 98(98), 221–233.
  50. Saad, A. (2020). Students’ computational thinking skill through cooperative learning based on hands-on, inquiry-based, and student-centric learning approaches. Universal Journal of Educational Research, 8(1), 290–296. https://doi.org/10.13189/ujer.2020.080135
  51. Sáez, M. J., & Carretero, A. J. (2002). The challenge of innovation: The new subject ‘natural sciences’ in Spain. Journal of Curriculum Studies, 34(3), 343–363. https://doi.org/10.1080/00220270110092590
  52. Schmidt, W. H. (Ed.). (2005). Characterizing pedagogical flow: An investigation of mathematics and science teaching in six countries. Springer.
  53. Schmidt, W. H., Raizen, S., Britton, E. D., Bianchi, L. J., & Wolfe, R. (Eds.). (1997). Many visions, many aims: A cross-national investigation of curricular intensions in school science (vol. 2). Springer.
  54. Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016). What students learn from hands-on activities. Journal of Research in Science Teaching, 53(7), 980–1002. https://doi.org/10.1002/tea.21320
  55. Smahel, D., Machackova, H., Mascheroni, G., Dedkova, L., Staksrud, E., Ólafsson, K., Livingstone, S., & Hasebrink, U. (2020). EU kids online 2020: Survey results from 19 countries. EU Kids Online. https://doi.org/10.21953/lse.47fdeqj01ofo
  56. Sultana, R. G. (2004). Guidance policies in the knowledge society: Trends, challenges and responses across Europe. Office for Official Publications of the European Communities.
  57. Tammaro, A. M. (2007). A curriculum for digital librarians: A reflection on the European debate. New Library World, 108(5/6), 229–246. https://doi.org/10.1108/03074800710748795
  58. Teig, N. (2022). Inquiry in science education. In T. Nilsen, A. Stancel-Piątak, & J. E. Gustafsson (Eds.), International handbook of comparative large-scale studies in education (pp. 1135–1165). Springer. https://doi.org/10.1007/978-3-030-88178-8_62
  59. Tytler, R. (2020). STEM education for the twenty-first century. In J. Anderson, & Y. Li (Eds.), Integrated approaches to STEM education. Advances in STEM education (pp. 21–43). Springer. https://doi.org/10.1007/978-3-030-52229-2_3
  60. Werder, C., & Otis, M. M. (Eds.). (2023). Engaging student voices in the study of teaching and learning. Taylor & Francis. https://doi.org/10.4324/9781003444503
  61. Whitty, G., & Furlong, J. (2017). Knowledge traditions in the study of education: An international exploration. Symposium Books. https://doi.org/10.15730/books.100
  62. Wiyanto, Saptono, S., & Hidayah, I. (2020). Scientific creativity: A literature review. Journal of Physics: Conference Series, 1567, Article 022044. https://doi.org/10.1088/1742-6596/1567/2/022044
  63. Xu, J. (2022). Memorisation is not rote learning: Rethinking memorisation as an embodied practice for Chinese students. Journal of Multilingual and Multicultural Development, 45(9), 3963–3979. https://doi.org/10.1080/01434632.2022.2134878
  64. Yılmaz, A. (2021). The effect of technology integration in education on prospective teachers’ critical and creative thinking, multidimensional 21st century skills and academic achievements. Participatory Educational Research, 8(2), 163–199. https://doi.org/10.17275/per.21.35.8.2
  65. Zhai, X., & Pellegrino, J. W. (2023). Large-scale assessment in science education. In N. G. Lederman, D. L. Zeidler, & J. S. Lederman (Eds.), Handbook of research on science education (pp. 1045–1097). Routledge. https://doi.org/10.4324/9780367855758-38
  66. Zhai, X., Yin, Y., Pellegrino, J. W., Haudek, K. C., & Shi, L. (2020). Applying machine learning in science assessment: A systematic review. Studies in Science Education, 56(1), 111–151. https://doi.org/10.1080/03057267.2020.1735757