Review Article

Electromagnetic radiation: A comprehensive review of misconceptions

Leonidas Gavrilas 1 * , Konstantinos T. Kotsis 1
More Detail
1 Department of Primary Education, University of Ioannina, Ioannina, GREECE* Corresponding Author
Eurasian Journal of Science and Environmental Education, 4(2), December 2024, 19-38, https://doi.org/10.30935/ejsee/15719
Submitted: 17 October 2024, Published: 12 December 2024
OPEN ACCESS   100 Views   46 Downloads
Download Full Text (PDF)

ABSTRACT

Electromagnetic radiation (EMR) is integral to both the natural world and technological innovation, yet widespread misconceptions about its nature and effects persist among the public, educators, and students. This comprehensive review examines these misconceptions, analyzing their origins–including inadequate education, the complexity of EMR concepts, media misrepresentation, and educators’ own misunderstandings–and their impact on scientific literacy and public health. By reviewing a wide range of scientific studies, we identify common misunderstandings, such as conflating ionizing and non-ionizing radiation, believing all radiation is harmful, and confusing irradiation with contamination. These misconceptions contribute to unwarranted health anxieties, resistance to beneficial technologies, and challenges in science education. We highlight the critical need for effective EMR education through curriculum integration, innovative teaching methods, and enhanced teacher training. By addressing these misconceptions through strategic educational reforms and evidence-based communication, we aim to foster a scientifically literate society capable of making informed decisions about EMR and its applications.

CITATION (APA)

Gavrilas, L., & Kotsis, K. T. (2024). Electromagnetic radiation: A comprehensive review of misconceptions. Eurasian Journal of Science and Environmental Education, 4(2), 19-38. https://doi.org/10.30935/ejsee/15719

REFERENCES

  1. Abdo, A. A., Allen, B., Berley, D., Blaufuss, E., Casanova, S., Chen, C., Coyne, D. G., Delay, R. S., Dingus, B. L., Ellsworth, R. W., Fleysher, L., Fleysher, R., Gebauer, I., Gonzalez, M. M., Goodman, J. A., Hays, E., Hoffman, C. M., Kolterman, B. E., Kelley, L. A., …, & Yodh, G. B. (2007). Discovery of TeV gamma-ray emission from the Cygnus region of the Galaxy. The Astrophysical Journal, 658(1), L33–L36. https://doi.org/10.1086/513696
  2. Acar Sesen, B., & Ince, E. (2010). The Internet as a source of misconception. Turkish Online Journal of Educational Technology, 9(4), 94–100.
  3. Ahmed, H. N., Pasha, A. R., & Malik, M. (2021). The role of teacher training programs in optimizing teacher motivation and professional development skills. Bulletin of Education and Research, 43(2), 17–37.
  4. Aiello, G., Lombardo, M., & Baldelli, S. (2024). Exploring vitamin D synthesis and function in cardiovascular health: A narrative review. Applied Sciences, 14(11), Article 4339. https://doi.org/10.3390/app14114339
  5. Aïmeur, E., Amri, S., & Brassard, G. (2023). Fake news, disinformation and misinformation in social media: A review. Social Network Analysis and Mining, 13(1), Article 30. https://doi.org/10.1007/s13278-023-01028-5
  6. Alparslan, C., Tekkaya, C., & Geban, Ö. (2003). Using the conceptual change instruction to improve learning. Journal of Biological Education, 37(3), 133–137. https://doi.org/10.1080/00219266.2003.9655868
  7. Altun, E., & Yildirim, N. (2023). What does critical thinking mean? Examination of pre-service teachers’ cognitive structures and definitions for critical thinking. Thinking Skills and Creativity, 49, Article 101367. https://doi.org/10.1016/j.tsc.2023.101367
  8. Amanzio, M., Palermo, S., & Benedetti, F. (2016). Nocebo and pain. In M. al’Absi, & M. A. Flaten (Eds.), Neuroscience of pain, stress, and emotion (pp. 117–131). Elsevier. https://doi.org/10.1016/B978-0-12-800538-5.00006-6
  9. Ambarwati, D., & Suyatna, A. (2018). Interactive design for self-study and developing students’ critical thinking skills in electromagnetic radiation topic. Journal of Physics: Conference Series, 948, Article 012039. https://doi.org/10.1088/1742-6596/948/1/012039
  10. Amineh, R. K. (2020). Applications of electromagnetic waves: Present and future. Electronics, 9(5), Article 808. https://doi.org/10.3390/electronics9050808
  11. Amoah, A., Jingfu, B., Kwaku, A., & Mawuli, E. S. (2018). Microwave super high frequency (SHF) antenna for (satellite communication systems, radar, aircraft navigation, radio astronomy, remote sensing and communications). In Proceedings of the IEEE Symposium on Product Compliance Engineering (pp. 1–8). IEEE. https://doi.org/10.1109/SPCEB.2018.8604474
  12. An, J., & Thomas, N. (2021). Students’ beliefs about the role of interaction for science learning and language learning in EMI science classes: Evidence from high schools in China. Linguistics and Education, 65, Article 100972. https://doi.org/10.1016/j.linged.2021.100972
  13. Ardito, L., Natalicchio, A., Appio, F. P., & Messeni Petruzzelli, A. (2021). The role of scientific knowledge within inventing teams and the moderating effects of team internationalization and team experience: Empirical tests into the aerospace sector. Journal of Business Research, 128, 701–710. https://doi.org/10.1016/j.jbusres.2019.11.022
  14. Aringer, L., Cunningham, J., Gobba, F., Leitgeb, N., Miro, L., Neubauer, G., Ruppe, I., Vecchia, P., & Wadman, C. (1997). Possible health implications of subjective symptoms and electromagnetic fields. Arbetslivsinstitutet. https://gupea.ub.gu.se/handle/2077/4156
  15. Azzam, E. I., Jay-Gerin, J.-P., & Pain, D. (2012). Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Letters, 327(1–2), 48–60. https://doi.org/10.1016/j.canlet.2011.12.012
  16. Bagatin, M., & Gerardin, S. (Eds). (2020). Ionizing radiation effects in electronics: From memories to imagers. CRC Press.
  17. Balta, N. (2018). High school teachers’ understanding of blackbody radiation. International Journal of Science and Mathematics Education, 16(1), 23–43. https://doi.org/10.1007/s10763-016-9769-z
  18. Bartz, R. J. (2017). CWTS®, CWS, and CWT complete study guide: Exams PW0‐071, CWS‐100, CWT‐100 (1st ed.). Wiley. https://doi.org/10.1002/9781119419426
  19. Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K.-W. (2012). Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9(3), 193–199. https://doi.org/10.7150/ijms.3635
  20. Batool, S., Bibi, A., Frezza, F., & Mangini, F. (2019). Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: A review. European Review for Medical and Pharmacological Sciences, 23(7), 3121–3128. https://doi.org/10.26355/eurrev_201904_17596
  21. Beauvais, C. (2022). Fake news: Why do we believe it? Joint Bone Spine, 89(4), Article 105371. https://doi.org/10.1016/j.jbspin.2022.105371
  22. Bell, B. I., Vercellino, J., Brodin, N. P., Velten, C., Nanduri, L. S. Y., Nagesh, P. K. B., Tanaka, K. E., Fang, Y., Wang, Y., Macedo, R., English, J., Schumacher, M. M., Duddempudi, P. K., Asp, P., Koba, W., Shajahan, S., Liu, L., Tomé, W. A., Yang, W.-L., …, & Guha, C. (2022). Orthovoltage X-rays exhibit increased efficacy compared with γ-rays in preclinical irradiation. Cancer Research, 82(15), 2678–2691. https://doi.org/10.1158/0008-5472.CAN-22-0656
  23. Belpomme, D., Hardell, L., Belyaev, I., Burgio, E., & Carpenter, D. O. (2018). Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environmental Pollution, 242, 643–658. https://doi.org/10.1016/j.envpol.2018.07.019
  24. Bezen, S., Aykutlu, I., & Bayrak, C. (2021). What does black-body radiation mean for pre-service physics teachers. Turkish Journal of Science Education, 4. https://doi.org/10.36681/tused.2021.98
  25. Billingsley, B., & Heyes, J. M. (2023). Preparing students to engage with science‐ and technology‐related misinformation: The role of epistemic insight. The Curriculum Journal, 34(2), 335–351. https://doi.org/10.1002/curj.190
  26. Bochner, B. (2021). Electromagnetic wave propagation in general Kasner-like metrics. arXiv. https://doi.org/10.1142/S0218271822300166
  27. Bórquez-Sánchez, E. (2024). Scientific literacy in biology and attitudes towards science in the Chilean education system. Research in Science & Technological Education. https://doi.org/10.1080/02635143.2024.2320104
  28. Borrego-Soto, G., Ortiz-López, R., & Rojas-Martínez, A. (2015). Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genetics and Molecular Biology, 38(4), 420–432. https://doi.org/10.1590/S1415-475738420150019
  29. Boyes, E., & Stanisstreet, M. (1994). Children’s ideas about radioactivity and radiation: Sources, mode of travel, uses and dangers. Research in Science & Technological Education, 12(2), 145–160. https://doi.org/10.1080/0263514940120204
  30. Bramson, M. A. (1968). Infrared radiation. Springer. https://doi.org/10.1007/978-1-4757-0911-7
  31. Bryan, R. N. (Eds). (2001). Introduction to the science of medical imaging (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511994685
  32. Buschke, F. (1961). Common misconceptions in radiation therapy. The American Journal of Surgery, 101(2), 164–171. https://doi.org/10.1016/0002-9610(61)90748-6
  33. Carassa, F. (1973). Aspects in using frequencies bands above 10 GHz for satellite communication systems. In A. Zancla (Ed.), Modern topics in microwave propagation and air-sea interaction (pp. 258–281). Springer. https://doi.org/10.1007/978-94-010-2681-9_22
  34. Carr, M. W., & Grey, M. L. (2002). Magnetic Resonance Imaging: Overview, risks, and safety measures. American Journal of Nursing, 102(12), 26–33. https://doi.org/10.1097/00000446-200212000-00012
  35. Cavagnetto, A. R. (2010). Argument to foster scientific literacy: A review of argument interventions in K-12 science contexts. Review of Educational Research, 80(3), 336–371. https://doi.org/10.3102/0034654310376953
  36. Choppin, G., Liljenzin, J.-O., Rydberg, J., & Ekberg, C. (2013). Radiation effects on matter. In G. Choppin, J.-O. Liljenzin, J. Rydberg, & C. Ekberg (Eds.), Radiochemistry and nuclear chemistry (4th ed.) (pp. 209–237). Academic Press. https://doi.org/10.1016/B978-0-12-405897-2.00008-2
  37. Ciraso, A. (2012). An evaluation of the effectiveness of teacher training: Some results from a study on the transfer factors of teacher training in Barcelona area. Procedia-Social and Behavioral Sciences, 46, 1776–1780. https://doi.org/10.1016/j.sbspro.2012.05.377
  38. Claassen, L., Van Dongen, D., & Timmermans, D. R. M. (2017). Improving lay understanding of exposure to electromagnetic fields; the effect of information on perception of and responses to risk. Journal of Risk Research, 20(9), 1115–1131. https://doi.org/10.1080/13669877.2015.1031268
  39. Colloca, L. (2024). The nocebo effect. Annual Review of Pharmacology and Toxicology, 64(1), 171–190. https://doi.org/10.1146/annurev-pharmtox-022723-112425
  40. D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248. https://doi.org/10.3390/ijms140612222
  41. Daher, J. K., Harris, J. M., & Wheeler, M. L. (1994). A look at the radio frequency susceptibility of commercial GPS receivers. In Proceedings of National Aerospace and Electronics Conference (pp. 164–170). https://doi.org/10.1109/NAECON.1994.332883
  42. Dan, S. S., & Mahapatra, S. (2009). Modeling and analysis of energy quantization effects on single electron inverter performance. Physica E: Low-Dimensional Systems and Nanostructures, 41(8), 1410–1416. https://doi.org/10.1016/j.physe.2009.04.004
  43. Dange, J. K. & Siddaraju. (2020). Role of teacher training program in enhancing quality education. International Journal of Education, Culture and Society, 5(6), 137–140. https://doi.org/10.11648/j.ijecs.20200506.14
  44. Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020). Implications for educational practice of the science of learning and development. Applied Developmental Science, 24(2), 97–140. https://doi.org/10.1080/10888691.2018.1537791
  45. Darling-Hammond, L., Schachner, A. C. W., Wojcikiewicz, S. K., & Flook, L. (2024). Educating teachers to enact the science of learning and development. Applied Developmental Science, 28(1), 1–21. https://doi.org/10.1080/10888691.2022.2130506
  46. Davydov, A. Y. (2012). Wave-particle duality in classical mechanics. Journal of Physics: Conference Series, 361, Article 012029. https://doi.org/10.1088/1742-6596/361/1/012029
  47. Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., Stanley, H. E., & Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554–559. https://doi.org/10.1073/pnas.1517441113
  48. Deng, X., Huang, H., Huang, S., Yang, M., Wu, J., Ci, Z., He, Y., Wu, Z., Han, L., & Zhang, D. (2022). Insight into the incredible effects of microwave heating: Driving changes in the structure, properties and functions of macromolecular nutrients in novel food. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.941527
  49. Dias Da Silva, P., & Heaton, L. (2017). Fostering digital and scientific literacy: Learning through practice. First Monday, 22(6). https://doi.org/10.5210/fm.v22i6.7284
  50. Dimitrova, T. L., & Weis, A. (2008). The wave-particle duality of light: A demonstration experiment. American Journal of Physics, 76(2), 137–142. https://doi.org/10.1119/1.2815364
  51. Directorate-General for Internal Policies of the Union (European Parliament), Siarova, H., Sternadel, D., & Szőnyi, E. (2019). Science and scientific literacy as an educational challenge: Research for CULT Committee. Publications Office of the European Union.
  52. Douglas, C. M. W. (2007). Scientific literacy and public understandings of science. In G. Ritzer (Ed.), The Blackwell encyclopedia of sociology (1st ed.). Wiley. https://doi.org/10.1002/9781405165518.wbeoss049
  53. Doviak, R. J., & Zrnić, D. S. (1993). Electromagnetic waves and propagation. In R. J. Doviak, & D. S. Zrnić (Eds.), Doppler radar and weather observations (pp. 10–29). Elsevier. https://doi.org/10.1016/B978-0-12-221422-6.50007-3
  54. Edvardsen, T., & Rosen, B. D. (2005). Why do we need magnetic resonance imaging in cardiology? Scandinavian Cardiovascular Journal, 39(5), 260–263. https://doi.org/10.1080/14017430500405015
  55. Engelmann, C. A., & Huntoon, J. E. (2011). Improving student learning by addressing misconceptions. Transactions American Geophysical Union, 92(50), 465–466. https://doi.org/10.1029/2011EO500001
  56. Englander, M. J., & Ghatan, C. (2021). Radiation and the pregnant IR: Myth versus fact. CardioVascular and Interventional Radiology, 44(6), 877–882. https://doi.org/10.1007/s00270-020-02704-1
  57. Ergul, O., Dinc, E., & Akan, O. B. (2015). Communicate to illuminate: State-of-the-art and research challenges for visible light communications. Physical Communication, 17, 72–85. https://doi.org/10.1016/j.phycom.2015.08.003
  58. Faasse, K. (2019). Nocebo effects in health psychology. Australian Psychologist, 54(6), 453–465. https://doi.org/10.1111/ap.12392
  59. Farashi, S., Bashirian, S., Khazaei, S., Khazaei, M., & Farhadinasab, A. (2022). Mobile phone electromagnetic radiation and the risk of headache: A systematic review and meta-analysis. International Archives of Occupational and Environmental Health, 95(7), 1587–1601. https://doi.org/10.1007/s00420-022-01835-x
  60. Felder, G. N., & Felder, K. M. (2022). The electromagnetic spectrum. In G. N. Felder, & K. M. Felder (Eds.), Modern physics (pp. 713–714). Cambridge University Press. https://doi.org/10.1017/9781108913270.019
  61. Feynman, R. P., Leighton, R. B., Sands, M. L., & Feynman, R. P. (2007). Mainly mechanics, radiation, and heat. Addison-Wesley.
  62. Formenti, S. C., Demaria, S., Barcellos-Hoff, M. H., & McBride, W. H. (2016). Subverting misconceptions about radiation therapy. Nature Immunology, 17(4), 345–345. https://doi.org/10.1038/ni.3363
  63. Frenzel Jr, L. E. (2010). Radio/wireless. In L. E. Frenzel Jr (Ed.), Electronics explained (pp. 147–182). Elsevier. https://doi.org/10.1016/B978-1-85617-700-9.00007-2
  64. Furuta, E., & Kusama, K. (2014). Teaching materials for radiation training and user guides. Radiation Safety Management, 13(1), 1–8. https://doi.org/10.12950/rsm.13.1
  65. Gabovich, A. M., & Gabovich, N. A. (2007). How to explain the non-zero mass of electromagnetic radiation consisting of zero-mass photons. European Journal of Physics, 28(4), 649–655. https://doi.org/10.1088/0143-0807/28/4/004
  66. Gavrilas, L., & Kotsis, K. T. (2023a). Assessing elementary understanding of electromagnetic radiation and its implementation in wireless technologies among pre-service teachers. International Journal of Professional Development, Learners and Learning, 5(2), Article ep2309. https://doi.org/10.30935/ijpdll/13191
  67. Gavrilas, L., & Kotsis, K. T. (2023b). Research for self-reported health problems after excessive talking time on mobile phones among university students. Eurasian Journal of Science and Environmental Education, 3(1), 7–15. https://doi.org/10.30935/ejsee/12958
  68. Gavrilas, L., & Kotsis, K. T. (2024). Development and validation of a survey instrument towards attitude, knowledge, and application of educational robotics (Akaer). International Journal of Research & Method in Education, 1–23. https://doi.org/10.1080/1743727X.2024.2358780
  69. Gavrilas, L., Kotsis, K. T., & Papanikolaou, M.-S. (2022a). Attitudes and behaviors of university students towards electromagnetic radiation of cell phones and wireless networks. Aquademia, 6(2), Article ep22009. https://doi.org/10.30935/aquademia/12393
  70. Gavrilas, L., Kotsis, K. T., & Papanikolaou, M.-S. (2022b). Gender differences in attitudes and behaviors associated with electromagnetic radiation of mobile phones and wireless networks. International Journal of Educational Innovation, 4(5), 25-37. https://journal.eepek.gr/assets/uploads/manuscripts/manuf_672_Ex8aVQhIOe.pdf
  71. Gavrilas, L., Kotsis, K. T., & Papanikolaou, M.-S. (2024a). Assessing teacher readiness for educational robotics integration in primary and preschool education. Education 3-13, 1–17. https://doi.org/10.1080/03004279.2023.2300699
  72. Gavrilas, L., Papanikolaou, M. – S., & Kotsis, K. T. (2024b). Exploring electricity in early childhood education: A 5E-based learning approach. Science Activities, 1–42. https://doi.org/10.1080/00368121.2024.2406208
  73. Gavrilas, L., Papanikolaou, M.-S., & Kotsis, K. T. (2024c). The views of preschool educators on the development of environmental awareness through distance education. Interdisciplinary Journal of Environmental and Science Education, 20(3), Article e2411. https://doi.org/10.29333/ijese/14656
  74. Geisler, A. N., Austin, E., Nguyen, J., Hamzavi, I., Jagdeo, J., & Lim, H. W. (2021). Visible light. Part II: Photoprotection against visible and ultraviolet light. Journal of the American Academy of Dermatology, 84(5), 1233–1244. https://doi.org/10.1016/j.jaad.2020.11.074
  75. Germuth, A. A. (2018). Professional development that changes teaching and improves learning. Journal of Interdisciplinary Teacher Leadership, 1(3), 77–90. https://doi.org/10.46767/kfp.2016-0025
  76. Goiceanu, C., Danulescu, R., Danulescu, E., Tufescu, F. M., & Creanga, D. E. (2011). Exposure to microwaves generated by radar equipment: Case-study and protection issues. Environmental Engineering and Management Journal, 10(4), 491–498. https://doi.org/10.30638/eemj.2011.069
  77. Gordon, M. (1994). An outline on electromagnetic radiation and public health. Reviews on Environmental Health, 10(3–4). https://doi.org/10.1515/REVEH.1994.10.3-4.149
  78. Goula, A., Chatzis, A., Stamouli, M.-A., Kelesi, M., Kaba, E., & Brilakis, E. (2021). Assessment of health professionals’ attitudes on radiation protection measures. International Journal of Environmental Research and Public Health, 18(24), Article 13380. https://doi.org/10.3390/ijerph182413380
  79. Granziera, H., Liem, G. A. D., Chong, W. H., Martin, A. J., Collie, R. J., Bishop, M., & Tynan, L. (2022). The role of teachers’ instrumental and emotional support in students’ academic buoyancy, engagement, and academic skills: A study of high school and elementary school students in different national contexts. Learning and Instruction, 80, Article 101619. https://doi.org/10.1016/j.learninstruc.2022.101619
  80. Grimes, D. R. (2022). Radiofrequency radiation and cancer: A review. JAMA Oncology, 8(3), Article 456. https://doi.org/10.1001/jamaoncol.2021.5964
  81. Gromkowska-Kępka, K. J., Puścion-Jakubik, A., Markiewicz-Żukowska, R., & Socha, K. (2021). The impact of ultraviolet radiation on skin photoaging–Review of in vitro studies. Journal of Cosmetic Dermatology, 20(11), 3427–3431. https://doi.org/10.1111/jocd.14033
  82. Grosso, F., Barbiani, D., Cavalera, C., Volpato, E., & Pagnini, F. (2024). Risk factors associated with nocebo effects: A review of reviews. Brain, Behavior, & Immunity-Health, 38, Article 100800. https://doi.org/10.1016/j.bbih.2024.100800
  83. Gudkov, S. V., Andreev, S. N., Barmina, E. V., Bunkin, N. F., Kartabaeva, B. B., Nesvat, A. P., Stepanov, E. V., Taranda, N. I., Khramov, R. N., & Glinushkin, A. P. (2017). Effect of visible light on biological objects: Physiological and pathophysiological aspects. Physics of Wave Phenomena, 25(3), 207–213. https://doi.org/10.3103/S1541308X17030074
  84. Guerra-Reyes, F., Guerra-Dávila, E., Naranjo-Toro, M., Basantes-Andrade, A., & Guevara-Betancourt, S. (2024). Misconceptions in the learning of natural sciences: A systematic review. Education Sciences, 14(5), Article 497. https://doi.org/10.3390/educsci14050497
  85. Han, B. (2020). Next-generation scientists: Past, present and future. The Innovation, 1(2), Article 100037. https://doi.org/10.1016/j.xinn.2020.100037
  86. Han, M., & Gogotsi, Y. (2023). Perspectives for electromagnetic radiation protection with MXenes. Carbon, 204, 17–25. https://doi.org/10.1016/j.carbon.2022.12.036
  87. Havránková, R. (2020). Biological effects of ionizing radiation. Casopis Lekaru Ceskych, 159(7–8), 258–260.
  88. Heddleson, R. A., & Doores, S. (1994). Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens–A review. Journal of Food Protection, 57(11), 1025–1037. https://doi.org/10.4315/0362-028X-57.11.1025
  89. Hennessy, S., D’Angelo, S., McIntyre, N., Koomar, S., Kreimeia, A., Cao, L., Brugha, M., & Zubairi, A. (2022). Technology use for teacher professional development in low- and middle-income countries: A systematic review. Computers and Education Open, 3, Article 100080. https://doi.org/10.1016/j.caeo.2022.100080
  90. Henriksen, E. K., & Jorde, D. (2001). High school students’ understanding of radiation and the environment: Can museums play a role? Science Education, 85(2), 189–206. https://doi.org/10.1002/1098-237X(200103)85:2<189::AID-SCE60>3.0.CO;2-S
  91. Heston, T. F., & Tafti, D. (2024). Nuclear medicine safety. StatPearls Publishing.
  92. Hewitt, P. G. (2015). Conceptual physics (12th ed.). Pearson.
  93. Hill, M. A. (2004). The variation in biological effectiveness of X-rays and gamma rays with energy. Radiation Protection Dosimetry, 112(4), 471–481. https://doi.org/10.1093/rpd/nch091
  94. Hoffer, A. J. (2019). Using data and research to address student misconceptions. International Review of Economics Education, 31, Article 100156. https://doi.org/10.1016/j.iree.2019.100156
  95. Houston, J. B., Spialek, M. L., & First, J. (2018). Disaster media effects: A systematic review and synthesis based on the differential susceptibility to media effects model. Journal of Communication, 68(4), 734–757. https://doi.org/10.1093/joc/jqy023
  96. Hull, M. M., & Hopf, M. (2020). Student understanding of emergent aspects of radioactivity. International Journal of Physics and Chemistry Education, 12(2), 19–33.
  97. Hussein, K. I., Alqahtani, M. S., Grelowska, I., Reben, M., Afifi, H., Zahran, H., Yaha, I. S., & Yousef, E. S. (2021). Optically transparent glass modified with metal oxides for X-rays and gamma rays shielding material. Journal of X-Ray Science and Technology, 29(2), 331–345. https://doi.org/10.3233/XST-200780
  98. Hyseni Duraku, Z., Blakaj, V., Shllaku Likaj, E., Boci, L., & Shtylla, H. (2022). Professional training improves early education teachers’ knowledge, skills, motivation, and self-efficacy. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.980254
  99. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2012). Radiation (IARC monographs on the evaluation of carcinogenic risks to humans). International Agency for Research on Cancer.
  100. IARC. (2011). IARC monographs on the evaluation of carcinogenic risks to humans, supplement 7: Overall evaluations of carcinogenicity: An update of IARC monographs volumes 1–42. International Agency for Research on Cancer.
  101. Ichihashi, M., Ueda, M., Budiyanto, A., Bito, T., Oka, M., Fukunaga, M., Tsuru, K., & Horikawa, T. (2003). UV-induced skin damage. Toxicology, 189(1–2), 21–39. https://doi.org/10.1016/S0300-483X(03)00150-1
  102. ICNIRP. (2009). Statement on the guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.
  103. Idris, A. N., Sathyamoorthy, D., Suldi, A. M., & Hamid, J. R. A. (2014). Effect of radio frequency interference (RFI) on the precision of GPS relative positioning. IOP Conference Series: Earth and Environmental Science, 18, Article 012035. https://doi.org/10.1088/1755-1315/18/1/012035
  104. IEEE. (2005). IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz (IEEE Std C95.1). Institute of Electrical and Electronics Engineers.
  105. Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering: From fundamentals to applications (1st ed.). Wiley. https://doi.org/10.1002/9781119079699
  106. Jagetia, G. C. (2022). Genotoxic effects of electromagnetic field radiations from mobile phones. Environmental Research, 212(Pt D), Article 113321. https://doi.org/10.1016/j.envres.2022.113321
  107. Jarrett, L., & Takacs, G. (2020). Secondary students’ ideas about scientific concepts underlying climate change. Environmental Education Research, 26(3), 400–420. https://doi.org/10.1080/13504622.2019.1679092
  108. Jauchem, J. R. (1995). Alleged health effects of electromagnetic fields: The misconceptions continue. Journal of Microwave Power and Electromagnetic Energy, 30(3), 165–177. https://doi.org/10.1080/08327823.1995.11688273
  109. Jauchern, J. (1991). Alleged health effects of electromagnetic fields: Misconceptions in the scientific literature. Journal of Microwave Power and Electromagnetic Energy, 26(4), 189–195. https://doi.org/10.1080/08327823.1991.11688156
  110. Jayaraju, N., Pramod Kumar, M., Sreenivasulu, G., Lakshmi Prasad, T., Lakshmanna, B., Nagalaksmi, K., & Madakka, M. (2023). Mobile phone and base stations radiation and its effects on human health and environment: A review. Sustainable Technology and Entrepreneurship, 2(2), Article 100031. https://doi.org/10.1016/j.stae.2022.100031
  111. Jia, C., Wang, Q., Yao, X., & Yang, J. (2021). The role of DNA damage induced by low/high dose ionizing radiation in cell carcinogenesis. Exploratory Research and Hypothesis in Medicine, 6(4), 177–184. https://doi.org/10.14218/ERHM.2021.00020
  112. Jin, G., Wodika, A., Darner, R., & Lai, J. (2023). Fostering scientific literacy with problem sets that generate cognitive presence and fulfill basic psychological needs. Journal of College Science Teaching, 52(7), 85–95. https://doi.org/10.1080/0047231X.2023.12315883
  113. Jin, Z. (2023). Analysis of electromagnetic wave applications and development. Highlights in Science, Engineering and Technology, 68, 172–181. https://doi.org/10.54097/hset.v68i.12061
  114. Johnson, L., Roan, C., Costa, M., Aung, H. H., & Marks, D. C. (2022). Gamma and X‐ray irradiation do not affect the in vitro quality of refrigerated apheresis platelets in platelet additive solution (PAS‐E). Transfusion, 62(S1). https://doi.org/10.1111/trf.16983
  115. Joseph, A. M., Fernandez, V., Kritzman, S., Eaddy, I., Cook, O. M., Lambros, S., Jara Silva, C. E., Arguelles, D., Abraham, C., Dorgham, N., Gilbert, Z. A., Chacko, L., Hirpara, R. J., Mayi, B. S., & Jacobs, R. J. (2022). COVID-19 misinformation on social media: A scoping review. Cureus, 14(4), Article e24601 https://doi.org/10.7759/cureus.24601
  116. Junying, B., & Yongli, A. (2019). Research and development of millimeter wave technology. International Journal of Advanced Network, Monitoring and Controls, 4(3), 73–78. https://doi.org/10.21307/ijanmc-2019-061
  117. Karmakar, A. (2016). SiRF technology for satellite and RADAR use. In Proceedings of the 2016 International Conference on Microelectronics, Computing and Communications (pp. 1–6). https://doi.org/10.1109/MicroCom.2016.7522492
  118. Kawase, T., Kamiya, M., Hayama, K., Nagata, M., Okuda, K., Yoshie, H., Burns, D. M., Tsuchimochi, M., & Nakata, K. (2015). X-ray and ultraviolet C irradiation-induced γ-H2AX and p53 formation in normal human periosteal cells in vitro: Markers for quality control in cell therapy. Cytotherapy, 17(1), 112–123. https://doi.org/10.1016/j.jcyt.2014.08.005
  119. Kelp, N. C., McCartney, M., Sarvary, M. A., Shaffer, J. F., & Wolyniak, M. J. (2023). Developing science literacy in students and society: Theory, research, and practice. Journal of Microbiology & Biology Education, 24(2), Article e00058-23. https://doi.org/10.1128/jmbe.00058-23
  120. Kendeou, P., & Johnson, V. (2024). The nature of misinformation in education. Current Opinion in Psychology, 55, Article 101734. https://doi.org/10.1016/j.copsyc.2023.101734
  121. Kjelsberg, R. (2024). Skepticism and physics: Epistemic beliefs of Norwegian physics students compared with other student groups. Discover Education, 3(1), Article 78. https://doi.org/10.1007/s44217-024-00153-3
  122. Klein, K., Calabrese, J., Aguiar, A., Mathew, S., Ajani, K., Almajid, R., & Aarons, J. (2023). Evaluating active lecture and traditional lecture in higher education. Journal on Empowering Teaching Excellence, 7(2), Article 6.
  123. Kochetova, G. V., Avercheva, O. V., Bassarskaya, E. M., & Zhigalova, T. V. (2022). Light quality as a driver of photosynthetic apparatus development. Biophysical Reviews, 14(4), 779–803. https://doi.org/10.1007/s12551-022-00985-z
  124. Kontomaris, S. V., Malamou, A., Balogiannis, G., & Antonopoulou, N. (2020). A simplified approach for presenting the differences between ionising and non-ionising electromagnetic radiation. Physics Education, 55(2), Article 025007. https://doi.org/10.1088/1361-6552/ab5c00
  125. Kotsis, K. T. (2023). Alternative ideas about concepts of physics, a timelessly valuable tool for physics education. Eurasian Journal of Science and Environmental Education, 3(2), 83–97. https://doi.org/10.30935/ejsee/13776
  126. Kotsis, K. T. (2024). The importance of teaching electromagnetic radiation interaction in high schools. Journal of Science Education Research, 8(2), 142–151. https://doi.org/10.21831/jser.v8i2.76537
  127. Kotsis, K. T., & Stylos, G. (2023). Relationship of IQ with alternative ideas of primary school students on the concepts of force and weight. European Journal of Education and Pedagogy, 4(1), 21–25. https://doi.org/10.24018/ejedu.2023.4.1.544
  128. Krawczyk, A., Korzeniewska, E., & Stando, J. (2020). Electromagnetic field in social perception–Myths and conspiracy theories. In Proceedings of the IEEE Problems of Automated Electrodrive. Theory and Practice (pp. 1–4). https://doi.org/10.1109/PAEP49887.2020.9240831
  129. Kuenzer, C., & Dech, S. (Eds). (2013). Thermal infrared remote sensing: Sensors, methods, applications. Springer. https://doi.org/10.1007/978-94-007-6639-6
  130. Lacomme, P., Hardange, J.-P., Marchais, J.-C., & Normant, E. (2001). Synthetic aperture radar. In Air and spaceborne radar systems (pp. 233–264). Elsevier. https://doi.org/10.1016/B978-189112113-5.50017-6
  131. Lahir, Y. K. (2023). Non-ionizing radiations and their biochemical and biomedical impacts: A review. Journal of Radiation and Cancer Research, 14(2), 53–66. https://doi.org/10.4103/jrcr.jrcr_17_22
  132. Laitinen, H., Kaunonen, M., & Åstedt-Kurki, P. (2014). The impact of using electronic patient records on practices of reading and writing. Health Informatics Journal, 20(4), 235–249. https://doi.org/10.1177/1460458213492445
  133. Lamb, G. M., & Gedroyc, W. M. W. (1997). Interventional magnetic resonance imaging. British Journal of Radiology, 70(Special-Issue-1), S81–S88. https://doi.org/10.1259/bjr.1997.0011
  134. Lei, R. F., Green, E. R., Leslie, S., & Rhodes, M. (2019). Children lose confidence in their potential to “be scientists,” but not in their capacity to “do science”. Developmental Science, 22(6), Article e12837. https://doi.org/10.1111/desc.12837
  135. Li, J.-K., Sun, K., Wang, Y., Hao, Z.-Y., Liu, Z.-H., Zhou, J., Fan, X.-Y., Chen, J.-L., Xu, J.-S., Li, C.-F., & Guo, G.-C. (2023). Experimental demonstration of separating the wave-particle duality of a single photon with the quantum Cheshire cat. Light: Science & Applications, 12(1), Article 18. https://doi.org/10.1038/s41377-022-01063-5
  136. Libarkin, J. C., Asghar, A., Crockett, C., & Sadler, P. (2011). Invisible misconceptions: Student understanding of ultraviolet and infrared radiation. Astronomy Education Review, 10(1), Article 010112. https://doi.org/10.3847/AER2011022
  137. Lin, S.-S. (2014). Science and non-science undergraduate students’ critical thinking and argumentation performance in reading a science news report. International Journal of Science and Mathematics Education, 12(5), 1023–1046. https://doi.org/10.1007/s10763-013-9451-7
  138. Lindberg, J. O., & Olofsson, A. D. (Eds). (2010). Online learning communities and teacher professional development: Methods for improved education delivery. IGI Global. https://doi.org/10.4018/978-1-60566-780-5
  139. Lips, M., Anderson, E., Nakamura, T., Harris, F., Schneider, G., Zic, J., Sanders, C., Owen, J., Hondros, J., & De Ruvo, A. (2021). Reflections on low-dose radiation, the misconceptions, reality and moving forward. Journal of Radiological Protection, 41(4), S306–S316. https://doi.org/10.1088/1361-6498/ac1a5d
  140. Liu, T.-F., Shan, H., Wang, H.-Q., & Luan, F.-J. (2021). Ionizing radiation exposure and cancer risks: Matter or not matter? Spine, 46(4), Article E286. https://doi.org/10.1097/BRS.0000000000003848
  141. Lopes, R. M., Comarú, M. W., Pierini, M. F., De Souza, R. A., & Hauser-Davis, R. A. (2024). Scientific communication and scientific literacy for the public perception of the importance of environmental quality for public health. Frontiers in Communication, 9. https://doi.org/10.3389/fcomm.2024.1297246
  142. Luo, H., Cai, M., & Cui, Y. (2021). Spread of misinformation in social networks: Analysis based on Weibo tweets. Security and Communication Networks. https://doi.org/10.1155/2021/7999760
  143. Maayah, Y., Nusrat, H., Pang, G., & Tambasco, M. (2022). Assessing the DNA damaging effectiveness of ionizing radiation using plasmid DNA. International Journal of Molecular Sciences, 23(20), Article 12459. https://doi.org/10.3390/ijms232012459
  144. Mandinach, E. B., & Schildkamp, K. (2021). Misconceptions about data-based decision making in education: An exploration of the literature. Studies in Educational Evaluation, 69, Article 100842. https://doi.org/10.1016/j.stueduc.2020.100842
  145. Martino, D. (2023). Energy quantization for Willmore surfaces with bounded index. arXiv. https://doi.org/10.48550/ARXIV.2305.08668
  146. Matsumura, Y., & Ananthaswamy, H. N. (2004). Toxic effects of ultraviolet radiation on the skin. Toxicology and Applied Pharmacology, 195(3), 298–308. https://doi.org/10.1016/j.taap.2003.08.019
  147. McAfee, M., & Hoffman, B. (2021). The morass of misconceptions: How unjustified beliefs influence pedagogy and learning. International Journal for the Scholarship of Teaching and Learning, 15(1). https://doi.org/10.20429/ijsotl.2021.150104
  148. McGowan, A., Dowley, A., & Ryan, M.-L. (2023). An assessment of radiation safety practices for transgender and gender non-binary patients in Irish radiology departments. Radiography, 29(6), 1021–1028. https://doi.org/10.1016/j.radi.2023.08.004
  149. Mehdipour, A., Yousefi-Ahmadipour, A., Kennedy, D., & Kazemi Arababadi, M. (2021). Ionizing radiation and toll like receptors: A systematic review article. Human Immunology, 82(6), 446–454. https://doi.org/10.1016/j.humimm.2021.03.008
  150. Merckel, C. (1972). Microwave and man–The direct and indirect hazards, and the precautions. California Medicine, 117(1), 20–24.
  151. Meyer, T., & Stockfleth, E. (2021). Light and skin. In C. Surber, & U. Osterwalder (Eds.), Current problems in dermatology (v. 55, pp. 53–61). S. Karger AG. https://doi.org/10.1159/000517592
  152. Millar, R. (1994). School students’ understanding of key ideas about radioactivity and ionizing radiation. Public Understanding of Science, 3(1), 53–70. https://doi.org/10.1088/0963-6625/3/1/004
  153. Millar, R., & Gill, J. S. (1996). School students’ understanding of processes involving radioactive substances and ionizing radiation. Physics Education, 31(1), 27–33. https://doi.org/10.1088/0031-9120/31/1/019
  154. Millar, R., Klaassen, K., & Eijkelhof, H. (1990). Teaching about radioactivity and ionising radiation: An alternative approach. Physics Education, 25(6), 338–342. https://doi.org/10.1088/0031-9120/25/6/310
  155. Miousse, I. R., Kutanzi, K. R., & Koturbash, I. (2017). Effects of ionizing radiation on DNA methylation: From experimental biology to clinical applications. International Journal of Radiation Biology, 93(5), 457–469. https://doi.org/10.1080/09553002.2017.1287454
  156. Mishchenko, M. I., Tishkovets, V. P., Travis, L. D., Cairns, B., Dlugach, J. M., Liu, L., Rosenbush, V. K., & Kiselev, N. N. (2011). Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(4), 671–692. https://doi.org/10.1016/j.jqsrt.2010.03.016
  157. Mladenova, V., Mladenov, E., Stuschke, M., & Iliakis, G. (2022). DNA damage clustering after ionizing radiation and consequences in the processing of chromatin breaks. Molecules, 27(5), Article 1540. https://doi.org/10.3390/molecules27051540
  158. Montero-Mesa, L., Fraga-Varela, F., Vila-Couñago, E., & Rodríguez-Groba, A. (2023). Digital technology and teacher professional development: Challenges and contradictions in compulsory education. Education Sciences, 13(10), Article 1029. https://doi.org/10.3390/educsci13101029
  159. Morales López, A. I., & Tuzón Marco, P. (2022). Misconceptions, knowledge, and attitudes towards the phenomenon of radioactivity. Science & Education, 31(2), 405–426. https://doi.org/10.1007/s11191-021-00251-w
  160. Mosayebnia, M., Ahmadi, M., Emzhik, M., & Hajiramezanali, M. (2023). Gamma-ray involved in cancer therapy and imaging. In M. Khafaji, & O. Bavi (Eds.), Electromagnetic waves-based cancer diagnosis and therapy (pp. 295–345). Academic Press. https://doi.org/10.1016/B978-0-323-99628-0.00003-4
  161. Mubeen, S. M., Abbas, Q., & Nisar, N. (2008). Knowledge about ionising and non-ionising radiation among medical students. Journal of Ayub Medical College, 20(1), 118–121.
  162. Muhammed T, S., & Mathew, S. K. (2022). The disaster of misinformation: A review of research in social media. International Journal of Data Science and Analytics, 13(4), 271–285. https://doi.org/10.1007/s41060-022-00311-6
  163. Nallanthighal, S., Shirode, A. B., Judd, J. A., & Reliene, R. (2016). Pomegranate intake protects against genomic instability induced by medical X-rays in vivo in mice. Nutrition and Cancer, 68(8), 1349–1356. https://doi.org/10.1080/01635581.2016.1225104
  164. Narla, S., Kohli, I., Hamzavi, I. H., & Lim, H. W. (2020). Visible light in photodermatology. Photochemical & Photobiological Sciences, 19(1), 99–104. https://doi.org/10.1039/c9pp00425d
  165. Neinavaz, E., Schlerf, M., Darvishzadeh, R., Gerhards, M., & Skidmore, A. K. (2021). Thermal infrared remote sensing of vegetation: Current status and perspectives. International Journal of Applied Earth Observation and Geoinformation, 102, Article 102415. https://doi.org/10.1016/j.jag.2021.102415
  166. Neumann, S. (2014). Three misconceptions about radiation–And what we teachers can do to confront them. The Physics Teacher, 52(6), 357–359. https://doi.org/10.1119/1.4893090
  167. Neumann, S., & Hopf, M. (2012). Students’ conceptions about ‘radiation’: Results from an explorative interview study of 9th grade students. Journal of Science Education and Technology, 21(6), 826–834. https://doi.org/10.1007/s10956-012-9369-9
  168. Neumann, S., & Hopf, M. (2013). Students’ ideas about nuclear radiation–Before and after Fukushima. Eurasia Journal of Mathematics, Science and Technology Education, 9(4), 393–404. https://doi.org/10.12973/eurasia.2014.948a
  169. Nygren, T., Frau-Meigs, D., Corbu, N., & Santoveña-Casal, S. (2022). Teachers’ views on disinformation and media literacy supported by a tool designed for professional fact-checkers: Perspectives from France, Romania, Spain and Sweden. SN Social Sciences, 2(4), Article 40. https://doi.org/10.1007/s43545-022-00340-9
  170. OECD. (2005). Health technologies and decision making. OECD Publishing. https://doi.org/10.1787/9789264016224-en
  171. OECD. (2013). The role of teachers and schools in shaping students’ engagement, drive and self-beliefs. OECD Publishing. https://doi.org/10.1787/9789264201170-9-en
  172. OECD. (2023). Communicating science responsibly. OECD Publishing. https://doi.org/10.1787/5c3be7ce-en
  173. Opdecam, E., & Everaert, P. (2019). Choice-based learning: Lecture-based or team learning? Accounting Education, 28(3), 239–273. https://doi.org/10.1080/09639284.2019.1570857
  174. Osepchuk, J. M. (2009). The history of the microwave oven: A critical review. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (pp. 1397–1400). https://doi.org/10.1109/MWSYM.2009.5165967
  175. Østerlind, A. (1993). Cancer and UV‐radiation. Pharmacology & Toxicology, 72(s1), 67–68. https://doi.org/10.1111/j.1600-0773.1993.tb01672.x
  176. Ozel, E., Ganesan, M. Z., Daud, A. K. M., Darusalam, G. B., & Ali, N. A. B. N. (2018). Critical issue teacher training into inclusive education. Advanced Science Letters, 24(7), 5139–5142. https://doi.org/10.1166/asl.2018.11288
  177. Özmen, H., Demircioğlu, H., & Demircioğlu, G. (2009). The effects of conceptual change texts accompanied with animations on overcoming 11th grade students’ alternative conceptions of chemical bonding. Computers & Education, 52(3), 681–695. https://doi.org/10.1016/j.compedu.2008.11.017
  178. Pacaci, C., Ustun, U., & Ozdemir, O. F. (2024). Effectiveness of conceptual change strategies in science education: A meta‐analysis. Journal of Research in Science Teaching, 61(6), 1263–1325. https://doi.org/10.1002/tea.21887
  179. Panagou, D., Kostara, C., Dimos, E., Stylos, G., & Kotsis, K. (2024). Honors high school graduates students’ misconceptions regarding evolutionary theory of biology. EIKI Journal of Effective Teaching Methods, 2(3). https://doi.org/10.59652/jetm.v2i3.188
  180. Paull, M., Holmes, K., Omari, M., Haski-Leventhal, D., MacCallum, J., Young, S., & Scott, R. (2022). Myths and misconceptions about university student volunteering: Development and perpetuation. International Journal of Voluntary and Nonprofit Organizations, 33(4), 833–845. https://doi.org/10.1007/s11266-021-00437-4
  181. Pereira, G. C., Traughber, M., & Muzic, R. F. (2014). The role of imaging in radiation therapy planning: Past, present, and future. BioMed Research International. https://doi.org/10.1155/2014/231090
  182. Phil Canlas, I. (2024). Attitude matters more: The impact of perceived competence and attitudes toward science on science engagement among university students. International Journal of Science Education. https://doi.org/10.1080/09500693.2024.2354943
  183. Plotz, T. (2017). Students’ conceptions of radiation and what to do about them. Physics Education, 52(1), Article 014004. https://doi.org/10.1088/1361-6552/52/1/014004
  184. Plotz, T., & Fitzgerald, B. W. (2021). Superheroes of the electromagnetic spectrum: A non-traditional way of teaching ionising radiation. Eurasia Journal of Mathematics, Science and Technology Education, 17(6), Article em1975. https://doi.org/10.29333/ejmste/10901
  185. Plotz, T., & Hollenthoner, F. (2019). Replicating a study about children’s drawings concerning radiation. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), Article 71. https://doi.org/10.4995/muse.2019.10390
  186. Plotz, T., & Hopf, M. (2016). Two concepts of radiation.: A case study to investigate existing preconceptions. European Journal of Science and Mathematics Education, 4(4), 447–459. https://doi.org/10.30935/scimath/9484
  187. Poirier, Y., Belley, M. D., Dewhirst, M. W., Yoshizumic, T. T., & Down, J. D. (2020). Transitioning from gamma rays to X rays for comparable biomedical research irradiations: Energy matters. Radiation Research, 193(6), Article 506. https://doi.org/10.1667/RADE-20-00039.1
  188. Pozo-Rico, T., Gilar-Corbí, R., Izquierdo, A., & Castejón, J.-L. (2020). Teacher training can make a difference: Tools to overcome the impact of COVID-19 on primary schools. An experimental study. International Journal of Environmental Research and Public Health, 17(22), Article 8633. https://doi.org/10.3390/ijerph17228633
  189. Prangnell, L. (2016). Visible light-based human visual system conceptual model. arXiv. https://doi.org/10.48550/ARXIV.1609.04830
  190. Prather, E. (2005). Students’ beliefs about the role of atoms in radioactive decay and half-life. Journal of Geoscience Education, 53(4), 345–354. https://doi.org/10.5408/1089-9995-53.4.345
  191. Prlić, I., Šiško, J., Varnai, V. M., Pavelić, L., Macan, J., Kobešćak, S., Hajdinjak, M., Jurdana, M., Cerovac, Z., Zauner, B., Mihić, M. S., & Avdagić, S. C. (2022). Wi-Fi technology and human health impact: A brief review of current knowledge. Archives of Industrial Hygiene and Toxicology, 73(2), 94–106. https://doi.org/10.2478/aiht-2022-73-3402
  192. Prokop, A.-T., & Nawrodt, R. (2024). Energy as a source of preservice teachers’ conceptions about radioactivity. Physical Review Physics Education Research, 20(1), Article 010155. https://doi.org/10.1103/PhysRevPhysEducRes.20.010155
  193. Puneet, K., Chakraborty, S. K., & Lalita. (2022). Infrared radiation: Principles and applications in food processing. In N. Kumar, A. Panghal, & M. K. Garg (Eds.), Thermal food engineering operations (pp. 349–373). Wiley. https://doi.org/10.1002/9781119776437.ch12
  194. Qing, A. (2011). Comment on “differential evolution as applied to electromagnetics”. IEEE Antennas and Propagation Magazine, 53(4), 169–171. https://doi.org/10.1109/MAP.2011.6097316
  195. Qu, J.-H., Liu, D., Cheng, J.-H., Sun, D.-W., Ma, J., Pu, H., & Zeng, X.-A. (2015). Applications of near-infrared spectroscopy in food safety evaluation and control: A review of recent research advances. Critical Reviews in Food Science and Nutrition, 55(13), 1939–1954. https://doi.org/10.1080/10408398.2013.871693
  196. Rabiei, M., Masoumi, S. J., Mortazavi, S. M. J., Nematolahi, S., & Haghani, M. (2023). Mobile cellular data and Wi-Fi use are not associated with adverse health effects. Journal of Biomedical Physics & Engineering, 13(6), 497–502. https://doi.org/10.31661/jbpe.v0i0.2206-1511
  197. Rahman, N., Khan, R., & Badshah, S. (2018). Effect of X-rays and gamma radiations on the bone mechanical properties: Literature review. Cell and Tissue Banking, 19(4), 457–472. https://doi.org/10.1007/s10561-018-9736-8
  198. Raza, S. A., Qazi, W., & Umer, B. (2019). Examining the impact of case-based learning on student engagement, learning motivation and learning performance among university students. Journal of Applied Research in Higher Education, 12(3), 517–533. https://doi.org/10.1108/JARHE-05-2019-0105
  199. Reeve, T. (Eds). (2018). Ionizing radiation: Advances in research and applications. Nova Science Publishers.
  200. Reisz, J. A., Bansal, N., Qian, J., Zhao, W., & Furdui, C. M. (2014). Effects of ionizing radiation on biological molecules–Mechanisms of damage and emerging methods of detection. Antioxidants & Redox Signaling, 21(2), 260–292. https://doi.org/10.1089/ars.2013.5489
  201. Rizzi, A., & Bonanomi, C. (2012). Colour illusions and the human visual system. In J. Best (Ed.), Colour design (pp. 83–104). Woodhead Publishing. https://doi.org/10.1533/9780857095534.1.83
  202. Rodrigues, C., & Singhal, T. (2024). What is new in the diagnosis of childhood tuberculosis? Indian Journal of Pediatrics, 91(7), 717–723. https://doi.org/10.1007/s12098-023-04992-0
  203. Rodrigues, F., Newell, R., Rathnaiah Babu, G., Chatterjee, T., Sandhu, N. K., & Gupta, L. (2024). The social media Infodemic of health-related misinformation and technical solutions. Health Policy and Technology, 13(2), Article 100846. https://doi.org/10.1016/j.hlpt.2024.100846
  204. Rowley, J., & Mazar, H. (2021). Misunderstandings about radiofrequency electromagnetic field exposure and 5G misinformation. In Proceedings of the IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (pp. 219–221). https://doi.org/10.1109/COMCAS52219.2021.9629063
  205. Rubin, G. J., Munshi, J. D., & Wessely, S. (2005). Electromagnetic hypersensitivity: A systematic review of provocation studies. Psychosomatic Medicine, 67(2), 224–232. https://doi.org/10.1097/01.psy.0000155664.13300.64
  206. Saric-Bosanac, S. S., Clark, A. K., Nguyen, V., Pan, A., Chang, F.-Y., Li, C.-S., & Sivamani, R. K. (2019). Quantification of ultraviolet (UV) radiation in the shade and in direct sunlight. Dermatology Online Journal, 25(7), Article 13030/qt4wc0f6tw. https://doi.org/10.5070/D3257044801
  207. Sasanuma, H., Yamada, S., Tsuda, M., & Takeda, S. (2020). Restoration of ligatable “clean” double-strand break ends is the rate-limiting step in the rejoining of ionizing-radiation-induced DNA breakage. DNA Repair, 93, Article 102913. https://doi.org/10.1016/j.dnarep.2020.102913
  208. Sasiela, R. J. (1994). Electromagnetic wave propagation in turbulence. Springer. https://doi.org/10.1007/978-3-642-85070-7
  209. Saunders, C., Tan, W., Faasse, K., Colagiuri, B., Sharpe, L., & Barnes, K. (2024). The effect of social learning on the nocebo effect: A systematic review and meta-analysis with recommendations for the future. Health Psychology Review. https://doi.org/10.1080/17437199.2024.2394682
  210. Saville, B. K., Zinn, T. E., Neef, N. A., Norman, R. V., & Ferreri, S. J. (2006). A comparison of interteaching and lecture in the college classroom. Journal of Applied Behavior Analysis, 39(1), 49–61. https://doi.org/10.1901/jaba.2006.42-05
  211. Schmidt, F. N., Hahn, M., Stockhausen, K. E., Rolvien, T., Schmidt, C., Knopp, T., Schulze, C., Püschel, K., Amling, M., & Busse, B. (2022). Influence of X-rays and gamma-rays on the mechanical performance of human bone factoring out intraindividual bone structure and composition indices. Materials Today Bio, 13, Article 100169. https://doi.org/10.1016/j.mtbio.2021.100169
  212. Schuette, C., Streuber, M., Pottgiesser, V., Preim, B., Saalfeld, P., Vahlbruch, J.-W., & Walther, C. (2023). A teaching concept for school experiments on radioactivity using augmented reality methods. Radiation Protection Dosimetry, 199(8–9), 716–724. https://doi.org/10.1093/rpd/ncad071
  213. Seitz, H., Stinner, D., Eikmann, Th., Herr, C., & Röösli, M. (2005). Electromagnetic hypersensitivity (EHS) and subjective health complaints associated with electromagnetic fields of mobile phone communication–A literature review published between 2000 and 2004. Science of The Total Environment, 349(1–3), 45–55. https://doi.org/10.1016/j.scitotenv.2005.05.009
  214. Shaaban, H., & Shaikh, M. B. (2018). Radiation and its associated health risks: Assessment of knowledge and risk perception among adolescents and young adults in Saudi Arabia. International Journal of Adolescent Medicine and Health, 33(1), Article 20180056. https://doi.org/10.1515/ijamh-2018-0056
  215. Shamboul, H. A. E. (2022). The importance of critical thinking on teaching learning process. Open Journal of Social Sciences, 10(1), 29–35. https://doi.org/10.4236/jss.2022.101003
  216. Shayanfar, S., & Pillai, S. D. (Eds). (2022). Ionizing radiation technologies: Managing and extracting value from wastes (1st ed.). Wiley. https://doi.org/10.1002/9781119488583
  217. Sheldrake, R., Mujtaba, T., & Reiss, M. J. (2017). Science teaching and students’ attitudes and aspirations: The importance of conveying the applications and relevance of science. International Journal of Educational Research, 85, 167–183. https://doi.org/10.1016/j.ijer.2017.08.002
  218. Shibata, J., Takeuchi, A., Kohno, H., & Tatara, G. (2017). Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor. arXiv. https://doi.org/10.1063/1.5011130
  219. Shortland, M. (1988). Advocating science: Literacy and public understanding. Impact of Science on Society, 38(4), 305–316.
  220. Siani, A., Joseph, M., & Dacin, C. (2024). Susceptibility to scientific misinformation and perception of news source reliability in secondary school students. Discover Education, 3(1), Article 93. https://doi.org/10.1007/s44217-024-00194-8
  221. Siersma, P. T., Pol, H. J., Van Joolingen, W. R., & Visscher, A. J. (2021). Pre-university students’ conceptions regarding radiation and radioactivity in a medical context. International Journal of Science Education, 43(2), 179–196. https://doi.org/10.1080/09500693.2020.1864504
  222. Silva, G. P. S., & Trindade, N. M. (2022). Panorama and perspectives of the teaching of radiation and radioactivity at the high school level. Science Education International, 33(2), 224–231. https://doi.org/10.33828/sei.v33.i2.10
  223. Sinclair, I. (2011). How traditional radio works. In Electronics simplified (pp. 95–117). Elsevier. https://doi.org/10.1016/B978-0-08-097063-9.10006-8
  224. Singh, R. K., McCoubrie, P., Burney, K., & Ash Miles, J. (2008). Teaching medical students about radiation protection–What do they need to know? Clinical Radiology, 63(12), 1344–1349. https://doi.org/10.1016/j.crad.2008.06.010
  225. Sitmukhambetov, S., Dinh, B., Lai, Y., Banigan, E. J., Pan, Z., Jia, X., & Chi, Y. (2023). Development and implementation of a metaphase DNA model for ionizing radiation induced DNA damage calculation. Physics in Medicine & Biology, 68(1), Article 014001. https://doi.org/10.1088/1361-6560/aca5ea
  226. Soltani, A., & Askarizadeh, G. (2021). How students’ conceptions of learning science are related to their motivational beliefs and self-regulation. Learning and Motivation, 73, Article 101707. https://doi.org/10.1016/j.lmot.2021.101707
  227. Stevens, R., Machiyama, K., Mavodza, C. V., & Doyle, A. M. (2023). Misconceptions, misinformation, and misperceptions: A case for removing the “mis‐” when discussing contraceptive beliefs. Studies in Family Planning, 54(1), 309–321. https://doi.org/10.1111/sifp.12232
  228. Suzuki, T. (2012). The misconceptions on radiation and radioactivity. Latin-American Journal of Physics Education, 6, 75–77.
  229. Talapko, J., Talapko, D., Katalinić, D., Kotris, I., Erić, I., Belić, D., Vasilj Mihaljević, M., Vasilj, A., Erić, S., Flam, J., Bekić, S., Matić, S., & Škrlec, I. (2024). Health effects of ionizing radiation on the human body. Medicina, 60(4), Article 653. https://doi.org/10.3390/medicina60040653
  230. Tang, X., Yang, T., Yu, D., Xiong, H., & Zhang, S. (2024). Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environment International, 185, Article 108535. https://doi.org/10.1016/j.envint.2024.108535
  231. Taşlidere, E. (2021). Relative effectiveness of conceptual change texts with concept cartoons and 5e learning model with simulation activities on pre-service teachers’ conceptual understanding of waves. Participatory Educational Research, 8(4), 215–238. https://doi.org/10.17275/per.21.87.8.4
  232. Taylor, S. C., Alexis, A. F., Armstrong, A. W., Chiesa Fuxench, Z. C., & Lim, H. W. (2022). Misconceptions of photoprotection in skin of color. Journal of the American Academy of Dermatology, 86(3), S9–S17. https://doi.org/10.1016/j.jaad.2021.12.020
  233. Thi Phuoc Van, N., Tang, L., Demir, V., Hasan, S. F., Duc Minh, N., & Mukhopadhyay, S. (2019). Review-microwave radar sensing systems for search and rescue purposes. Sensors, 19(13), Article 2879. https://doi.org/10.3390/s19132879
  234. Thill, A., Cammaerts, M.-C., & Balmori, A. (2023). Biological effects of electromagnetic fields on insects: A systematic review and meta-analysis. Reviews on Environmental Health. https://doi.org/10.1515/reveh-2023-0072
  235. Tsai, C. H., Eghdam, A., Davoody, N., Wright, G., Flowerday, S., & Koch, S. (2020). Effects of electronic health record implementation and barriers to adoption and use: A scoping review and qualitative analysis of the content. Life, 10(12), Article 327. https://doi.org/10.3390/life10120327
  236. Tuieng, R. J., Cartmell, S. H., Kirwan, C. C., & Sherratt, M. J. (2021). The effects of ionising and non-ionising electromagnetic radiation on extracellular matrix proteins. Cells, 10(11), Article 3041. https://doi.org/10.3390/cells10113041
  237. Turiman, P., Omar, J., Daud, A. M., & Osman, K. (2012). Fostering the 21st century skills through scientific literacy and science process skills. Procedia-Social and Behavioral Sciences, 59, 110–116. https://doi.org/10.1016/j.sbspro.2012.09.253
  238. Tuttle, M. J., Cejas, D., Kang, D., Muchaamba, F., Goncarovs, B., Ozakman, Y., Aziz, F., & Orelle, A. (2023). Promoting science literacy and awareness across the globe: The role of scientists as science ambassadors. Journal of Microbiology & Biology Education, 24(2), Article e00041-23. https://doi.org/10.1128/jmbe.00041-23
  239. Ugweje, O. C. (2004). Radio frequency and wireless communications. In H. Bidgoli (Ed.), The Internet encyclopedia (1st ed.). Wiley. https://doi.org/10.1002/047148296X.tie151
  240. Ürek, H. (2021). Awareness of Turkish pre-service teachers about the risks of electromagnetic radiation in daily life cases. Journal of Science Learning, 4(2), 140–150.
  241. Uzorka, A., Namara, S., & Olaniyan, A. O. (2023). Modern technology adoption and professional development of lecturers. Education and Information Technologies, 28(11), 14693–14719. https://doi.org/10.1007/s10639-023-11790-w
  242. Valladares, L. (2021). Scientific literacy and social transformation. Science & Education, 30(3), 557–587. https://doi.org/10.1007/s11191-021-00205-2
  243. Ventista, O. M., & Brown, C. (2023). Teachers’ professional learning and its impact on students’ learning outcomes: Findings from a systematic review. Social Sciences & Humanities Open, 8(1), Article 100565. https://doi.org/10.1016/j.ssaho.2023.100565
  244. Vettenranta, S. (1996). The media’s reception of the risk associated with radioactive disasters. Radiation Protection Dosimetry, 68(3), 287–291. https://doi.org/10.1093/oxfordjournals.rpd.a031881
  245. Vieira, R. M., & Tenreiro-Vieira, C. (2016). Fostering scientific literacy and critical thinking in elementary science education. International Journal of Science and Mathematics Education, 14(4), 659–680. https://doi.org/10.1007/s10763-014-9605-2
  246. Vila, A., Sánchez-Reyes, A., Conill, C., Gispert, J. D., Trampal, C., Láinez, C., Vayreda, J., & Pedro, A. (2010). Comparison of positron emission tomography (PET) and computed tomography (CT) for better target volume definition in radiation therapy planning. Clinical and Translational Oncology, 12(5), 367–373. https://doi.org/10.1007/s12094-010-0518-4
  247. Vollmer, M. (2004). Physics of the microwave oven. Physics Education, 39(1), 74–81. https://doi.org/10.1088/0031-9120/39/1/006
  248. Wang, E., Liu, X., Li, Z., Liu, Z., & He, X. (2014). Application of electromagnetic radiation (EMR) technology in monitoring and warning of coal and rock dynamic disasters. In C. Drebenstedt, & R. Singhal (Eds.), Mine planning and equipment selection (pp. 561–568). Springer. https://doi.org/10.1007/978-3-319-02678-7_54
  249. Wang, S., & Zhao, J. (2022). New prospectives on light adaptation of visual system research with the emerging knowledge on non-image-forming effect. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.1019460
  250. Welbourne, D. J., Claridge, A. W., Paull, D. J., & Lambert, A. (2016). How do passive infrared triggered camera traps operate and why does it matter? Breaking down common misconceptions. Remote Sensing in Ecology and Conservation, 2(2), 77–83. https://doi.org/10.1002/rse2.20
  251. WHO. (2014). Electromagnetic fields and public health: Mobile phones. World Health Organization. https://www.who.int/news-room/q-a-detail/electromagnetic-fields-and-public-health-mobile-phones
  252. WHO. (2023). Ionizing radiation and health effects. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/ionizing-radiation-and-health-effects
  253. Williams, S. L. (1988). Addressing misconceptions about phobia, anxiety, and self-efficacy: A reply to Marks. Journal of Anxiety Disorders, 2(3), 277–289. https://doi.org/10.1016/0887-6185(88)90007-2
  254. Wilson, J. R. (2019). Perception versus radioactive reality: How misconception influences radiation policy. IEEE Potentials, 38(4), 42–47. https://doi.org/10.1109/MPOT.2018.2857860
  255. Wojcik, A., Hamza, K., Lundegård, I., Enghag, M., Haglund, K., Arvanitis, L., & Schenk, L. (2019). Educating about radiation risks in high schools: Towards improved public understanding of the complexity of low-dose radiation health effects. Radiation and Environmental Biophysics, 58(1), 13–20. https://doi.org/10.1007/s00411-018-0763-4
  256. Wolfe, C. M., & Cognetta, A. B. (2016). Radiation therapy (RT) for nonmelanoma skin cancer (NMSC), a cost comparison: Clarifying misconceptions. Journal of the American Academy of Dermatology, 75(3), 654–655. https://doi.org/10.1016/j.jaad.2016.01.035
  257. Wong, D., Leong, T. K., Ravindran, S., & Lin, L. S. (2023). Students’ alternative conceptions and risk perceptions of radiation and radioactivity. The Physics Educator, 5(2), Article 2350009. https://doi.org/10.1142/S2661339523500099
  258. Wood, A. W., & Karipidis, K. (Eds.). (2017). Non-ionizing radiation protection: Summary of research and policy options. John Wiley & Sons. https://doi.org/10.1002/9781119284673
  259. Wood, A., & Roy, C. (2017). Overview: The electromagnetic spectrum and nonionizing radiation. In A. W. Wood, & K. Karipidis (Eds.), Non‐ionizing radiation protection (pp. 1–9). Wiley. https://doi.org/10.1002/9781119284673.ch1
  260. Xiao, C., He, N., Liu, Y., Wang, Y., & Liu, Q. (2020). Research progress on biodosimeters of ionizing radiation damage. Radiation Medicine and Protection, 1(3), 127–132. https://doi.org/10.1016/j.radmp.2020.06.002
  261. Yamamoto, S., Watabe, H., Nakanishi, K., Yabe, T., Yamaguchi, M., Kawachi, N., Kamada, K., Yoshikawa, A., Islam, M. R., Miyake, M., Tanaka, K. S., & Kataoka, J. (2023). Hybrid imaging of prompt X-rays and induced positrons using a pinhole gamma camera during and after irradiation of protons. Physics in Medicine & Biology, 68(11), Article 115015. https://doi.org/10.1088/1361-6560/acd2a2
  262. Yan, Q., Xin, B., & Liu, Y. (2021). Development and application of infrared radiation materials in the field of textile and clothing. Journal of Physics: Conference Series, 1790, Article 012054. https://doi.org/10.1088/1742-6596/1790/1/012054
  263. Yan, S. (2024). Research on the applications of the wireless communication. Applied and Computational Engineering, 40(1), 192–198. https://doi.org/10.54254/2755-2721/40/20230649
  264. Yin, S., Song, D., Li, J., He, X., Qiu, L., Lou, Q., Wei, M., & Liu, Y. (2022). Research on electromagnetic radiation (EMR) waveform characteristics of coal failure process using Hilbert-Huang transform (HHT). Measurement, 187, Article 110195. https://doi.org/10.1016/j.measurement.2021.110195
  265. Zafar, U., Khattak, M., Zafar, H., & Rehman, H. (2022). Let’s play games: A comparison of case-based learning approach with gamification technique. Cureus, 14(8), Aricle e27612. https://doi.org/10.7759/cureus.27612
  266. ZafarAhmed, D., & ZafarAhmed, Q.-A. (2014). Health risks caused by wireless technologies. Journal of Undergraduate Research at Minnesota State University, Mankato, 3(1). https://doi.org/10.56816/2378-6949.1178
  267. Zeleke, B. M., Brzozek, C., Bhatt, C. R., Abramson, M. J., Freudenstein, F., Croft, R. J., Wiedemann, P., & Benke, G. (2021). Wi-Fi related radiofrequency electromagnetic fields (RF-EMF): A pilot experimental study of personal exposure and risk perception. Journal of Environmental Health Science and Engineering, 19(1), 671–680. https://doi.org/10.1007/s40201-021-00636-7
  268. Zloklikovits, S., & Hopf, M. (2021). Evaluating key ideas for teaching electromagnetic radiation. Journal of Physics: Conference Series, 1929, Article 012063. https://doi.org/10.1088/1742-6596/1929/1/012063
  269. Zucker, A., Noyce, P., & Mccullough, A. (2020). Just say no! : Teaching students to resist scientific misinformation. The Science Teacher, 87(5), 24–29. https://doi.org/10.2505/4/tst20_087_05_24
  270. Zwinkels, J. (2014). Light, electromagnetic spectrum. In R. Luo (Ed.), Encyclopedia of color science and technology (pp. 1–8). Springer. https://doi.org/10.1007/978-3-642-27851-8_204-1